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ABSTRACT

In federated learning, the synchronous approach employed by the aggregating algorithm in the federal server,

such as federated averaging (FedAVG), introduces high network communication costs, thus rendering it

unsuitable for securing a network of unmanned aerial vehicles. This approach impedes the convergence speed

of the global model and degrades its performance by increasing the number of participants. This study

proposes a novel optimized aggregating algorithm called delay-aware truncated accuracy-(DATA)-based

FedAVG. DATA-FedAVG is robust to the contingencies of straggling edge servers/clients (owing to network

connectivity issues and system heterogeneity) and adaptively selects the fraction of clients whose model

parameters are to be utilized in building the global model, thus optimally detecting intrusions in the network.

In addition, the truncated client selection mechanism applied by DATA-FedAVG allows only clients with

high-accuracy contributions to participate in both local training and federal updates. Extensive simulation

experiments performed with a cybersecurity dataset validate the high performance of the proposed model and

its reliability in accurately detecting attacks within an almost 75% reduced communication cost, while

improving the performance of the intrusion detection model in terms of the average accuracy, recall, precision,

and F1-score by 2%, 3%, 3%, and 3%, respectively.
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Ⅰ. Introduction

In the last decade, an emerging and ubiquitous

Internet of Things (IoT) device called an unmanned

aerial vehicle (UAV), often referred to as a drone,

has been extensively employed in both military and

civilian applications. In a UAV network, several

UAVs are connected via wireless technologies (such

as WiFi, MAVlink, and Internet) to provide

real-time information during operation. However, the

resource constraints of UAVs (energy and

computing limitations) impede their performance in

achieving low latency, high data rates, and reliable

services, which are the major requirements of

wireless networks[1].

Incorporating edge computing (EC) technology

into a UAV network can help mitigate the

bottleneck of resource limitations experienced by the

nodes in the network, thereby improving the

network performance. EC is an innovative approach

to alleviate the high data transmission costs and

network traffic delays incurred when a data center in

the cloud is utilized for data storage and analysis;

additionally, it uses distributed servers to process

time-sensitive data close to the periphery of the

network. Consequently, the addition of EC servers to
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the UAV network drastically reduces network

outages due to insufficient battery energy. In

addition, bandwidth limitations are overcome as

telemetry data and network traffic are stored,

cached, and processed in dedicated EC servers.

Similarly, latency is minimized because applications

and computing services are processed close to the

UAVs where the data are generated[2].

However, UAV networks still suffer from aerial

adversarial intrusions because of their operation in

hostile environments and dependency on wireless

communication technologies[3]. Cyberattacks and

physical attacks are the two major categories of

attacks that can be launched in UAV networks.

Whereas cyberattacks involve data manipulation that

can be launched remotely, physical attacks involve

physical damage to devices in the network. As the

UAVs in a network constantly communicate with

each other utilizing wireless communication

technologies (such as Wi-Fi, Bluetooth, and 5G) and

open-source software (such as MAVLink), the

susceptibility of the network to cyberattacks is very

high. Off-the-shelf UAVs have been designed using

limited functional mechanisms[4].

For instance, a malicious UAV can transmit

superfluous data to overflood the limited bandwidths

of legitimate UAVs in a network, thus causing a

denial of service (DoS) or jamming attacks[5].

Hence, to realize the complete potential and global

adoption of UAVs in the aerospace industry, an

intelligent intrusion detection model must be

incorporated into the network for robust network

security and optimal performance to guard against

the pervasive effects of cyberattacks in this

time-critical network[6]. Although conventional

machine learning (ML) and deep learning (DL)

models have displayed renowned success for

intrusion detection tasks, these schemes are

cloud-centric with high communication overheads

because of the large volume of data used in training

the models[1].

Moreover, the central server has access to all

network data generated and communicated by the

UAVs during operations, thus leading to privacy

issues[7]. Consequently, the centralized ML and DL

models are unsuitable for UAV networks.

Additionally, these models introduce high

complexities that overwhelm the computing capacity

of the UAVs during real-time critical mission

operations. In addition, ML and DL models have

low convergence speeds and low accuracy

capabilities when trained with nonindependent and

identically distributed (nonIID) data, that is,

dissimilar data distributions[8].

Federated learning (FL) is a promising technique

proposed by Google for promoting edge device

learning and foster data privacy preservation[9]. Most

FL research aims to optimize aggregating

algorithms, such as federated averaging (FedAVG).

The need to implement FedAVG is owing to the

inherently high communication cost[10] and model

degradation[11] of FedAVG when aggregating the

model parameters of clients, owing to its

synchronous approach and random selection of

clients. For instance, it solves uncertainty and

randomness in the selection of clients in an

industrial IoT environment.

The authors of [10] proposed an accuracy-based

client-selection mechanism. Additionally, to

accelerate the convergence of the global model, only

the parameter contributions from high-performance

clients were used to update the global model.

Similarly, in [12], FedAVG was modified by

incorporating a dynamic learning rate to adapt to a

fading channel in a wireless data aggregation

scheme utilized for over-the-air computation.

Although the private data of clients are preserved

when utilizing the enhanced FedAVG in these

works, the challenge of straggling clients in the

network was not considered.

Therefore, this study focused on two phases.

First, our proposed algorithm is robust to straggling

clients in the network while still achieving a high

performance the global models in an efficient

manner. Second, the delay-aware truncated accuracy

(DATA) FedAVG designed in this study was

employed to provide maximum security to the UAV

networks against diverse types of attacks.

Nonetheless, this study made the following

contributions.
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1. A decentralized privacy-preserving method was

proposed for data analytics and artificial

modeling within a federated learning

framework. A sophisticated intrusion detection

model was developed through the collaborative

participation of UAV-edge servers in

real-world network contingencies.

2. An efficient lightweight multilayer perceptron

that serves as the principal AI attack detection

model for both the client and federal servers in

the federated network was implemented.

3. Owing to the stringent and adaptive strategy

applied by DATA-FedAVG during the

selection of the fraction of clients participating

in both local training and general updating,

which is crucial for a security system,

straggling clients were efficiently accommodated,

even at a reduced communication cost, without

affecting the network’s performance.

4. Several simulation experiments were conducted

to investigate the impact of the straggler effect

owing to an increased fraction of client

participation and the reliability, effectiveness,

and efficiency of the proposed algorithm in

terms of network scalability. Thus,

DATA-FedAVG was subjected to different

hyperparameters and variable compliance with

the UAV network and FL settings based on

the average performance.

5. The performance of the proposed algorithm

was validated by comparing it with other

state-of-the-art aggregating algorithms to

determine the detection accuracy, processing

time, and rationality in terms of other essential

metrics when trained and tested with a

cybersecurity dataset.

The remainder of this paper is structured as

follow: The background of the study and extant

literature are discussed in Section Ⅱ . The proposed

intelligent framework is extensively discussed in

Section Ⅲ . The experimental setup and results, as

well as, a comparison of existing frameworks, are

presented in Section Ⅳ . Finally, the conclusions n

of this study are presented in Section Ⅴ.

Ⅱ. Background of Study and 
Related Works

The bulk research on extant literature considered

in this article is focused on two key strategies for

providing security mechanisms to UAV networks: 1)

Centralized-based Intrusion detection frameworks; 2)

Federated learning-based Intrusion detection

frameworks.

2.1 Centralized-Based Intrusion Detection 
Model for UAV Network

Basically, intrusion detection models (IDMs) are

hardware/software integrated into the UAV network

to monitor anomalous traffic data and to alert the

network of any deviations in forms of

intrusions/attacks. The ultimatum of every IDM is to

guarantee resilient protection over various attacks.

Network-based IDM (NIDM) and host-based IDM

(HIDM) are the two major types of IDMs,

categorized based on their data source[2]. While

HIDM monitors specific operating system

applications to discover malicious data, NIDM

investigates the traffic patterns of nodes in the

network to discover unusual traffic targeted to

impede the overall performance of the network[13].

According to the detection approach, IDMs can

be classified as either signature-based or

anomaly-based. With a database of predefined

patterns/rules, signature-based IDM can detect

previously known attacks in the network. On the

other hand, anomaly-based IDM is widely used to

detect known and novel attacks. ML/DL models

utilized for attack detection and prediction tasks are

trained with network traffic data containing benign

and anomalous network behaviors. Hence, network

traffic with deviation from models’ thresholds is

subsequently classified as intrusive actions from

attackers[3].

Both ML/DL models such as random forest

classifier, support vector classifier, decision tree,

dDeep reinforcement learning, long short-term

memory (LSTM), convolution neural network
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(CNN), etc., have been widely used as

anomaly-based IDM to provide security to the drone

network. Autonomous detection of attacks by UAVs

in the network was enabled by the adoption of a

deep-Q-learning model designed by [14]. To secure

the communications of drones in a software-defined

environment, authors in [15] proposed a CNN model

for the extraction of data features, a deep

auto-encoder model for data dimensionality

reduction, and an attention mechanism that was used

to improve the features of important data for fast

convergence of the model. In addition, a real-time

data analytics framework was designed in [16] based

on the LSTM model to investigate intrusions

launched at the drone network. In [17], an optimized

random forest model was used as the baseline

algorithm for the IDM. We envisaged the integration

of the IDM in dedicated edge servers for securing

the communication link of the nodes in the UAV

network from DoS and other malware attacks.

Despite this plethora of works, some limitations

still exist. Firstly, modeling ML algorithms for

intrusion detection tasks with complex datasets

having multidimensional features (feasible in

real-world scenarios) can be tedious and time

expensive, due to the manual preprocessing steps

needed to build highperformative models. The

expensive time cost no doubt contradicts the

time-criticality attribute of IDM essential during

real-time robust protection against invaders.

Moreover, in the centralized scheme, no preservation

of data privacy as data generated by the different

IoT devices in the network are sent to the central

server for the training of the AI model.

2.2 Federated Learning (FL) Techniques
The general concept of FL is to promote

on-device training of AI models without

compromising data privacy. Edge servers make use

of the local private data from IoT devices to

collaboratively train a shared global model following

a decentralized approach in a federated network.

Specifically, in an FL network, the aggregator

publicizes the parameter of the global model to a

random set of clients (edge servers) in the network.

After which, the global model is trained individually

by a fraction of selected clients utilizing their private

data. At the completion of the local training by the

participating clients, only their model parameters

(excluding local data) are synchronously uploaded to

the federal server where the aggregation is done and

a new global model emerges. Subsequently, other

rounds of training commence, involving selected

clients downloading the new global model and again

locally training this model with their private dataset.

This process of downloading, updating, and creating

a global model is continued in the FL network until

the global model converges given the a desired s

performance or a pre-defined number of federal

rounds.

According to [18], clients’ data can be partitioned

following the horizontal, vertical, and transfer

federated learning formats. Thus, in this work, the

horizontal FL approach is adopted in an FL scenario

where the cybersecurity datasets comprise different

clients having similar features with different

sampling spaces reflecting the data generated by

each fleet of UAVs deployed to perform

surveillance operations in different environments.

Therefore, the data generated by the UAVs in a

particular cluster is peculiar to the cluster, like

one-to-one mapping.

On the other hand, the vertical FL approach is set

up in situations where the data features are

dissimilar but captured in a similar sample space.

Whereas, the transfer FL scheme is a combination of

both different data features and sampling space.

Furthermore, characterized by the resource capacities

of clients in an FL network, the cross-silo and

cross-device settings are the two types of FL

schemes[19]. In a crosssilo FL setting, the clients’

data are generated from organizations/entities having

a wide data distribution and few participating

clients. Also, these clients have substantial

networking and computational resources. Whereas

the cross-device setting considered in this study and

applicable to most wireless IoT networks, has

numerous participating clients with limited network

resources and fluctuating communication

connectivity, thus, displaying the tendency of
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training latencies during the updating process due to

intermittent availability of the devices.

Considering the spatial heterogeneity, high

mobility, and susceptibility of the UAV network to

jamming attacks, authors in [5] proposed an

enhanced FL that prioritized the clients’ groups

leveraging the Dempster-Shafer theory. This theory

enables the aggregator to select high-performing

client groups to participate in updating the global

model. However, no specific structure of the ML/DL

model was stated as the algorithm used for detecting

the jamming attacks in the network for

reproducibility sake.

To provide security for wireless edge networks,

both [2], [11] designed FL-based attention-gated

recurrent unit (FedAGRU) and FedACNN

respectively. Both works tried to improve FedAVG

by integrating attention mechanisms. The idea is to

utilize only local clients with increased weights for

federal aggregation to reduce communication delays

during network attack detection. To curb the use of

rogue drones, [20] proposed a drone authentication

model based on FL while securing the local models’

parameters with homomorphic encryption during

federal aggregation.

Authors in [21] enhanced the efficiency and

reliability of data sharing in UAV-enabled networks,

by developing an asynchronous FL scheme due to

the heterogeneous resource capacity of the devices

in the network. Moreover, a selection strategy was

introduced to utilize only essential devices with a

certain accuracy threshold to participate during local

training, to speed up the convergence of the global

model. Other researchers have also investigated

different security frameworks to combat intrusions in

the UAV network[5] and other wireless

networks[2,11,22-25], leveraging FL techniques.

However, most of these intrusion detection

frameworks are deployed at the core network which

does not measure the actual security needs of

dynamic networks[2]. Nevertheless, although

contributions were made in the above research

works by providing security defense in various

networks, improvement is paramount since the

design of intrusion detection algorithms in FL

networks is still in the developmental stage. Most of

the works that employed FL techniques in the UAV

network neglected the security aspects. It is essential

to state that only a minuscule amount of research

has been done employing the FL technique for

intrusion detection tasks in the UAV network.

In an attack scenario, the time needed to detect a

possible attack could become a crucial factor in

halting the pervasive occurrence of the attack given

the volatility of the UAV network. In such cases,

neglecting the straggler effect of FL can exacerbate

the situation. The straggler effect in FL is a situation

that occurs when some of the edge servers in the

network expend a long time to send local

parameters. In such a situation, the overall learning

process can be impeded, leading to the slow

convergence of the global model[26]. Hence, to

mitigate the straggler effect, this work proposes a

stringent mechanism that aids the aggregator to

perform global aggregation given the contributions

of clients that uploaded their model parameters

within a specific time stamp. Furthermore, to speed

up the convergence of the global model client

selection of each particular round is based on the

accuracy contributions of participating clients with

respect to the accuracy threshold, evaluated by the

aggregator based on the validation dataset.

Ⅲ. System Model and Implementation

An illustration of the edge-assisted UAV network

is given in this section, as well as the proposed

intelligent aggregating algorithm employed for

intrusion detection tasks in the federated network.

3.1 Problem Definition
An edge-aided UAV network designed to detect

attacks in a federated learning setting; consisting of

a global cloud server, K flying edge servers, and P

UAVs belonging to k number of clusters, as

captured in Fig. 1 is considered in this research.

Each Kth edge server during network authentication

is designated as master controlling specific ki cluster.

If p is the summation of data samples generated by

the UAVs during a mission-critical operation, and
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Fig. 1. Intrusion Detection Model Based on Federated Learning Scheme

the ith UAV has its custom-generated dataset

depicted as Ui, with pi samples of data, then the

objective of the FL system is to minimize the global

loss function when predicting anomalous data from

normal traffic data, using Equation 1. Thus, taking

cognizance of the weighted sum of the local loss

from each Kth edge server during local training.

(1)

where q represents the parameter vector, (pi,q, r i,q)

depicts the input and the predicted output

respectively, and F i(q) is a specific loss function, in

this work, the sparse-categorical.

As envisioned in this research, the UAV network

is exploited for reconnaissance operations involving

spatiotemporal activities embarked on by the fleet of

UAVs. Before embarking on the network’s mission,

the drones are authenticated in the different clusters

with the objective to navigate and communicate

network traffic data with each other and their

designated edge servers in a multi-hop manner given

an established routing protocol. The drones equipped

with adequate sensors such as camera, lidar, and

other sensors are configured to survey their

operational environments whilst sending information

(images, and live video feeds) to the dedicated edge

servers for real-time data analysis. That is, the

heterogenous data generated by each cluster is

handled by the edge servers as communication

between drones in different clusters is restricted, to

limit the risks of unauthorized access to sensitive

network data.

In an FL security network, the server (also called

the cloud server) instantiates the global model and

broadcasts its parameters to all participating clients

(UAV edge servers) servers in the network. The

goal is to promote data privacy in each cluster by

allowing the clients to utilize their private data and

collaboratively train the shared model in a

distributed manner. At the end of each local

training, the clients send their model parameters to

the federal server for aggregation and global model

updating as detailed in Fig. 1. Clients’ updates are

ephemeral and aggregated as soon as possible at

every communication round. After aggregation, the

updated global model parameter is sent back to the
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client servers for another round of training and

parameter optimization involving a different batch of

the dataset. Parallel communications between the

federal server and the client servers are repeated

synchronously until the convergence of the global

model at a desired accuracy.

The aggregation function is an optimization

algorithm that enables the federal server to aggregate

the parameters sent by decentralized and

heterogeneous clients. Since each client has a

specific version of the global model, the aggregation

function coordinates each client’s contribution

(parameter) based on its in-trinsic setup to build an

updated global model without having access to the

client’s private data. The goal is to create a robust

model that is representative of the individual clients’

models. Several aggregation functions can be

utilized by the federal server for aggregating the

model parameters from the collaborating clients,

with FedAVG and federated stochastic gradient

descent (FedSGD) being the most widely used.

FedAVG algorithm is based on the traditional

stochastic gradient descent (SGD) used in optimizing

DL models. It performs optimization by sending the

current state of the global model to a subset F of

clients that execute local training by running ϵ epoch

(the number of forward and backward passes of

training samples, also called local iterations) of

mini-batch b (the number of training samples in a

single forward and backward pass, also known as

batch-size) SGD, after which the clients’ gradients

will be sent to the server for averaging. The

averaging and updating processes are repeated over

a number of communication rounds R until

convergence of the global model or certain criteria

is achieved.

FedAVG is beneficial to reduce the

communication bottlenecks in the FL network

because it applies two key strategies; performs

multiple local SGD updates and communicates with

only a subset of the clients. Following these

strategies, the global model converges within fewer

communication rounds when the batch SGD update

for each communication round is adequately

chosen[27]. That is, if the parameters (ϵ, b, R)

facilitating the optimization operation of FedAVG

are not effectively selected, it can potentially lead to

the performance degradation of the global model.

Contrarily, FedSGD updates the parameter of the

global model by concatenating the gradient

computed by each local client and performing

traditional SGD as its optimization technique.

Although FedSGD is computationally effective, its

communication cost is expensive[11]. Nonetheless,

when ϵ =1 and b = 8, invariably FedAvg ” FedSGD.

However, the limitations of both averaging

functions in terms of suboptimal model performance

when subjected to non-IID data[10,28] and expensive

communication costs[29] respectively, necessitate the

improvement. Considering the critical importance of

the UAV network, especially when deployed for

reconnaissance and surveillance operations, and the

targeted sophisticated types of attacks experienced in

this network, a security layer is integral. Therefore,

a security mechanism that is responsive, resilient,

reliable, and robust is expedient.

3.2 Delay-Aware Segmentation against 
Stragglers

As earlier stated, in the Rth federal round of a

standardized FL scheme, the weight of the initial

global model Wg is sent to randomly selected Ft

clients amongst all K clients in the network. For

each round of local training, E performed by Ft

clients with their own private data, parameters of the

local models are sent to the server.

While handling straggling clients, we assume a

semi-asynchronous approach; a periodic server

aggregation. At each federal round R, the optimized

global model alongside a time stamp (Wg+1, t) is sent

to F t clients. That is, given a hard deadline Td, the

optimized model Wg+1 is built based on the

parameter aggregation of the clients who updated the

server within the deadline period. However, the

parameter contributions of the straggling clients are

not neglected but are used in the next federal round R

+ 1 or in subsequent rounds, depending on the delay.

Assuming Qi
(R) is the set of clients that uploaded

their model parameters within the given time

threshold at the federal round r for r R. Therefore,
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Ft = Qi
(q) + Qi

(R), where Qi
(q) is considered as the set

of clients randomly selected at federal round R but

whose model parameters were not uploaded to the

federal server due to time delay. Consequently, the

clients whose model parameters arrived within the

time deadline at federal round R are categorized into

one of the R + 1 sets: QR
(0), QR

(1), QR
(2)…QR

(R).

Moreover, the model parameter sent from client k

∈QR
(r) after E local updates with weight wr is

denoted as wr(k). Since we aim to optimize FedAVG

without the straggling clients influencing the

emergence of the global model for every round r,

the weighted average is performed on the clients’

model parameters using equation 2:

(2)

where is the local weighted result of a

group of representative models received by the

federal server at round R with lag r - R + 1.

Furthermore, the weighted average of the

straggling clients is considered for the same federal

round R according to the level of the time lag:

. Where is a

regularized coefficient that is directly proportional to

the amount of dataset in and inversely

proportional to (R - r + 1)l, for every lag exponent l
0. The goal is to have a larger weight assigned to

(clients with the updated optimized global

model at round R) with a least lag (R - r + 1). Given

the weighted sum can be

calculated as

(3)

where l is the average time coefficient. For

subsequent round R + 1, a new subset of clients CR+1

is selected by the server, and the new global model

with timestamp wR+1, t + 1 is sent to the clients for

another round of local training. In essence, the

proposed model is robust to straggling clients, as the

updating of the global model is not affected by the

delay of stragglers. The contributions of straggling

clients are not neglected but utilized in future

federal rounds.

3.3 Truncated Accuracy-Based Federated 
Averaging

While the global model is being optimized by the

aggregation of clients’ model parameters, a

validation dataset is available at the federal server to

evaluate the attack detection performance of each

participating client. Let Nval be the number of

validation datasets containing the different

anomalous and benign datasets in the server. During

client parameter updating, the server evaluates the

accuracy performance of each client using the

validation dataset, with the given equation:

(4)

where acci is the accuracy of the ith client’s model

on its local dataset, pi is the number of samples in

the ith client’s local dataset and Nval is the validation

dataset. Therefore, with an accuracy threshold of

90%, a list of client selections at each round of

global training is achieved, to truncate clients with

attack detection < 90.

To the best of our knowledge, the proposed

algorithm in this research is the first work that

provides a security solution to a cyber-physical

network like that of the UAV, with stringent

averaging approaches. While considering the

real-world challenges of network connectivity issues

and clients’ resource limitations resulting in

straggling clients, the delay aware truncated

accuracy (DATA) federated averaging algorithm

helps to mitigate the high communication overhead

predominant to FL scheme, at the same time

enhance the security resiliency of the UAV network.

3.4 Deep Learning Model for Intrusion 
Detection

The principal model that is continuously trained

and improved by the collaborative participation of
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Fig. 2. Lightweight Sequential Multilayer Perceprron for Clients and Federal Server

clients in an FL network to perform a specific task,

is either an ML or DL model. In this study, a

simplified neural network known as the multilayer

perceptron (MLP) is employed for attack detection

and prediction task. In the architectural structure of

an MLP, the network traffic of the UAV network is

received by the input layer, while the processing of

the input data is handled by the hidden layers, and

the various anomalous and benign labels are

classified by the output layer, with the neurons as

the basic building blocks of the network.

Consequently, the number of hidden layers and

neurons are influential parameters in determining the

performance of the MLP model. However, as a rule

of thumb, a complex MLP is designed using a large

number of hidden layers and neurons, resulting in an

inevitable trade-off between the complexity and

overfitting of the model. In this regard, employing

MLP for intrusion detection in the UAV network

requires careful consideration in the selection of the

number of hidden layers and the number of neurons

constituting these hidden layers, as both the input

and output layers are dependent on the number of

features (independent variables) and labels

(dependent variables) respectively in the dataset.

The MLP model design captured in Fig. 2,

displays a simplified architecture comprising the

input layer, five hidden layers, and the output layer

with 71 neurons stacked together. The choice of a

lightweight model for detecting attacks in the UAV

network is to reduce computational complexity

during local training and global modeling and to

ensure speedy intrusion detection during eventual

implementation. In addition, sixteen neurons

representing the number of features in the datasets

constitute the input layer, which is densely

connected to the ten neurons in the first hidden

layer, as well as the subsequent ones until the output

layer containing 5 neurons depicting the 5 classes of

normal and anomalous network traffic. Intuitively,

each neuron in a given layer (except in the input

layer) receives inputs from the previous layer which

is a weighted sum mapped with a nonlinear

activation function, to produce outputs that are

transferred to neurons of subsequent layers in a

similar format.

In essence, each layer starting from the input

feeds the next layer with their computational results

until the classification task is completed by the

output layer. To introduce nonlinearity to the model

(allowing the model to learn more abstract

representations of the input data), aiding in the

alleviation of the vanishing gradient problem during

backpropagation for effective and efficient model

learning, and fast convergence of the model, the

rectified linear (ReLU) activation function was used

in each of the five hidden layers, mathematically

expressed in equation 5 as:

(5)

where z is the linear combination of inputs repre-

sented by the weighted sum of inputs, xi, wi, and b

are the input of the ith neuron, associated weight,

and bias respectively. Whereas f(z) is the activation

function that performs a simple thresholding

operation on each weighted neuron so that if z 0

the exact value is given as output and if z < 0 the
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Layer Type Output Shape No. of Parameter

dense_31 (Dense) (None, 10) 170

dense_32 (Dense) (None, 10) 110

dense_33 (Dense) (None, 10) 110

dense_34 (Dense) (None, 10) 110

dense_35 (Dense) (None, 10) 110

dense_36 (Dense) (None, 10) 110

dense_37 (Dense) (None, 5) 55

Table 1. Structural Layout of the Proposed Lightweight
Multilayer Perceptron

S/N Parameter Value

1 Batch_size 32

2 Learning_rate 0.001

3
Optimization

function
Adams

4
Activation function

(Hidden layers)
ReLU

5
Activation function

(Output layer)
Softmax

6 Loss function Sparse_categorical_crossentropy

Table 2. Hyperparameters Used for Model Training

value is set to 0.

Thus, setting the output of the ReLU function

from 0 to positive 8. While the vector of real

numbers from the output layer is mapped to a

probability distribution over the five classes using

the softmax activation function given in equation 6,

the sparse categorical cross entropy was employed to

optimize the model during training using the loss

function in equation 7. Hence, calculating the

difference between the predicted probabilities and

ground truth.

(6)

where s is the softmax function, is the input

vector of the ith neuron, K is the number of class

labels and exj is the standard exponential function of

the output vector. In addition, a detailed description

of the architectural layout and other hyperparameters

used in the training of the proposed MLP model is

highlighted in Table 1 and Table 2 respectively.

(7)

where N is the total number of samples in the

dataset yi represents the ground truth label for the ith

sample, and ŷi is the predicted label of the same

sample.

3.5 Experimental Setup
In this section, we succinctly described how the

FL experiment was conducted, the dataset used for

evaluating the proposed model, the preprocessing

steps involved, and the simulation processes.

3.6 Simulation Setup
The implementation of the proposed truncated av-

eraging algorithm was done using Flower[30] as the

FL framework. As an agnostic framework, Flower

can be used with Pytorch and Tensorflow (employed

in this study) for building the DL framework. Also,

Pandas and Numpy enabled the federated analytics.

Google Colaboratory offered the computing resource

for running the simulations, while Python 3.9.7 was

used as the programming language, supported by

Flower (1.1.0) and Tensorflow(2.9.1). Lastly, the

Windows 10 operating system with the configuration

of Intel(R) Core(TM) i5-7400 CPU @ 3.00GHz,

8GB RAM, and GPU Tesla K80 make up the

hardware specifications of the system used for the

simulation.

3.7 Dataset Preprocessing
Since the UAV network is a type of wireless sen-

sor network (WSN) where the sensor nodes are air-

borne UAVs, the WSN dataset (WSN-DS) a

cybersecurity dataset[31], created for detecting the

variants of DoS attacks commonly experienced in a

WSN was used to evaluate the performance of the

proposed model. Blackhole, Grayhole, Flooding, and

Scheduling attacks constitute the four different types

of attacks in the WSN-DS, containing 374661

samples in addition to benign (normal) samples

reflecting a real-world attack scenario, with the

description given in Table 3.

Although the WSN-DS has no missing and
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S/N Traffic Type Description Sample Size Training Set Test Set Val.Set

1 Blackhole

A type of DoS attack where the attacker

advertises himself to the drones in a cluster as

the master controlling the cluster. Thus,

intercepting and discarding all data packets

forwarded, with the aim of disrupting

communication.

10049 7034 2010 1005

2 Grayhole

Similar to the blackhole attack, but instead of

discarding all the data packets, the attacker

selectively forwards some of the data after

modifications, thereby, compromising data

communication.

14596 10217 2920 1459

3 Flooding

This DoS attack is aimed at overwhelming the

network bandwidth with a high volume of

traffic, so as to degrade the network

performance.

3312 2318 662 332

4 Scheduling

The attacker aims at manipulating the scheduling

tasks of the UAVs, leading to disorientation or a

worst-case scenario complete idleness of the

UAVs during time-critical missions.

6638 4646 1328 664

5 Normal
Benign telemetry data and real-time commands

and control signals in the network.
340066 238046 68014 34006

Table 3. Statistical Distribution and Description of WSN-DS

‘NAN’ (not a number) values, feature scaling and

label encoding were performed on the independent

and dependent features respectively. To normalize

the input features of the dataset to have a uniform

distribution so that each feature contributes equally

to the task of attack detection, the feature scaling

technique for data normalization was employed. The

standard scaler (Z-score normalization) feature

scaling technique was used to independently

standardize each 16 feature in the training set to a

mean of 0 and a standard deviation of 1, achieved

by subtracting the mean and dividing by the

standard deviation using the formula:

(8)

where X is the initial feature, m is the mean of the

feature, s is the standard deviation and Xscaled is

the resultant scaled feature. On the other hand, the

categorical target classes were label encoded by

assigning an arbitrary integer value (0 to 4) to each

unique category representing the five classes in the

dataset.

Furthermore, to achieve a real-world FL scenario

where all the clients generate and individually train

local models, depicting non-iid data compliance, the

dataset was divided into various local datasets for

training. A closer look at Table 3 indicates the

highly imbalanced dataset distribution used in this

experiment, which is a reflection of a feasible

real-world attack situation. To ascertain the efficacy

of the proposed model when deployed in the real

world, applying an oversampling technique to

balance the class distribution was completely

ignored. However, to avoid the model from

overfitting, the dataset was split into 70:20:10 for

training, testing, and evaluation statistically analyzed

also in Table 3.

To design an FL network consisting of a server

and multiple clients, Flower implements the ´get

-parameters´, fit, and evaluate methods. While the

´get-parameters´ uploads the local parameters from

the clients to the server, the fit method enables each

instance of the client to download, locally train and

upload optimized parameters to the server, whereas

the evaluate method evaluates model parameters

received from the server on the local dataset and



논문 / DATA-FedAVG: Delay-Aware Truncated Accuracy-Based Federated Averaging for Intrusion Detection in UAV Network

659

Fig. 3. Overall Attack Detection Flow of the Federated Intrusion Detection Model For a Secured Edge-Assisted UAV Network

Parameter Value

Local epoch (E) 1, 5

Communication rounds (R) 40

Number of clients (K) 20,30,40,50

Participating fraction of clients 0.5, 0.6, 0.7, 0.8

Model MLP

Table 4. Parameters Utilized During Simulation

sends the evaluation result to the server. It is worth

noting that the lightweight MLP model was utilized

during experimentation. Although Flower provides

(FedAVG) and accommodates (FedSGD) averaging

functions and other aggregating algorithms, the

proposed truncated averaging function designed in

this study served as the aggregating algorithm in the

global server. Lastly, the overall process of

providing security to the UAV network utilizing the

proposed algorithm is displayed in Fig. 3.

To evaluate the performance of the proposed algo-

rithm, several experiments were conducted based on

varying parameters explicitly given in Table 4. In

addition, this work investigated the performance of

FedAVG and FedSGD aggregation algorithms

alongside the proposed truncated averaging

algorithm when subjected to different federated

variables to validate the robustness of the proposed

algorithm.

Ⅳ. Result Discussion and Performance 
Evaluation

In this section, the results obtained by DATA-

FedAVG during several simulation experiments are

discussed. Also, we evaluated the performance of

the proposed algorithm alongside state-of-the-art FL

algorithms based on essential metrics, and their

results are presented herein.

4.1 Performance Metrics
▪True Positive (TP): It is the amount of correctly

predicted attacks from the total attack samples.

▪True Negative (TN): It is the amount of normal

data accurately detected as benign.

▪False Positive (FP): It is the amount of

incorrectly predicted benign data as attack data.

▪False Negative (FN): It is the amount of

incorrectly predicted attack data as benign data.

▪Accuracy

(9)

▪Precision:

(10)

▪Recall:

(11)

▪F1-Score:

(12)
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Round Time (secs) Accuracy (%) Loss Precision (%) Recall (%) F1-Score (%)

5 165 97.24 0.073 87.76 86.99 87.27

10 322 97.30 0.065 89.93 90.84 89.56

15 477 97.84 0.050 90.28 92.01 90.02

20 624 97.78 0.049 90.34 90.95 90.53

25 776 97.45 0.057 90.07 91.45 90.59

30 931 98.08 0.042 90.46 91.76 91.09

35 1060 97.85 0.047 90.37 91.53 90.52

40 1265 97.93 0.043 89.83 91.18 90.02

Table 5. Performance of Proposed Algorithm @ E = 1, K = 20, F = 0.5

▪Loss:

(13)

▪Processing time

4.2 Performance Evaluation
This research focuses on reducing the high

communication cost caused by straggling clients in

the FL network, especially in attacks scenario, while

improving the performance in securing the network.

Thus, the WSN-DS cybersecurity is used for the

simulation experiments and comparison is done with

some state-of-the-art aggregating algorithms like

FedAVG[27] and FedSGD[32]. The reliability of

DATA-FedAVG was evaluated by iterating the

simulation three times and then averaged using six

different performance metrics.

As highlighted in Table 5, the performance of

DATA-FedAVG is recorded given a local training

iteration E = 1), clients fraction size of 5% F = 0.5

total client size in the network K = 20 for a

communication round of R = 40. As detailed in

Table 5, the global model optimally converged at an

accuracy of 98.08%, loss of 0.042 precision of

90.46%, recall of 91.76%, and F1-Score of 91.09%

during the communication round of 30. However,

the least training time of 165secs is achieved during

a communication round of 5, buttressing the

trade-off between communication overhead and

optimal performance experienced in the FL network.

4.2.1 Comparison of the Proposed

Algorithm with State-of-the-Art

Algorithms

For a more viable evaluation, the proposed model

was compared with two popularly deployed

federated algorithms; FedSGD[32] and FedAVG[27].

Given a local epoch of 5, 20 participating UAV

edge servers as clients in the network, 5% fraction

of clients, and a global communication round of 40,

the prediction performance of the three algorithms

based on accuracy and loss can be visualized in Fig.

4.

As displayed in Fig. 4, the global convergence of

FedSGD and FedAVG was achieved at a prediction

accuracy of less than 98% during the federated

communication of 35. Conversely, at a reduced

communication round of 20, an optimized global

model is created with an accuracy even greater than

98% with the proposed algorithm as the aggregation

function. Also, at the least communication round of

5, the proposed algorithm is capable of detecting

attacks with an accuracy of 98%, indicating its

capability of reducing the network communication

cost by 75%. Thus, DATA-FedAVG is more

efficient than FedSGD and FedAVG. Categorically,

the proposed algorithm will immensely tackle the

communication overhead issues caused by high

communication rounds in a real-world federated

setting, as within a minimal communication round

high detection accuracy is guaranteed.

Similarly, the losses recorded by the algorithms

are captured in Fig. 4. The loss graph in Fig. 4

depicts the discrepancies of each of the algorithms

during predictions. High losses ranging from 0.06 to

0.05 can be observed to be obtained by both



논문 / DATA-FedAVG: Delay-Aware Truncated Accuracy-Based Federated Averaging for Intrusion Detection in UAV Network

661

Fig. 5. Accuracy Performance of the Different
Aggregation Functions for Varying Fraction of Clients @ E
= 5, K = 20 and R = 40

Fig. 4. Accuracy and Loss Recorded by the Proposed Algorithm and some-state-of-the-art Algorithms

FedAVG and FedSGD, with the highest loss

recorded by FedAVG. Portraying the proneness of

both algorithms to false negatives/ false positives.

The lowest loss of average

0.037 during all communication rounds recorded

by the proposed model shows its capability to

correctly predict anomalous data from benign data,

thus capable of securing the UAV network from

cyberattacks.

4.2.2 Sensitivity Analysis and Evaluation:

Impact of Varying Fraction of Participating

Clients

This particular experiment is conducted to

validate the robustness of DATA-FedAVG to

straggling clients in situations of unsteady client

participation, either due to network connectivity

issues or resource limitations. In this experiment,

varying fractions of clients, that is @ F = 0.6, 0.7,

0.8 were considered with a fixed total number of

clients, K = 20, local training E = 5, and

communication rounds of 40. This is to simulate a

real-world scenario of straggling participating clients

and observe the performance of the algorithms.

Fig. 5, captures the progressing uniform accuracy

recorded by FedSGD and FedAVG during the

communication rounds from 5 to 10, with

consideration to all fractions of clients. A

non-uniform increment can be observed amongst

both algorithms when the communication round

increased to 15 and 20 also in all fraction client

sizes. However, a notable improvement of

performance can be seen for FedSGD F = 0.8

(almost 1.3% accuracy increment). Typically in an

FL setting, as the number of communication rounds

increase, a corresponding improvement in the

performance of the global model ought to be

achieved, with a tradeoff on communication cost

too. Ironically, FedAVG even with an increased

fraction of clients (@ F =0.8), and a global iteration

of 30, had its global model converged at a

prediction accuracy of 97%. In contrast, the

proposed DATA-FedAVG algorithm displays

reliability to straggling clients scenario considering

the highest global model prediction accuracy of

98.3% is achieved when the least fraction of clients

F = 0.6 is participating in the updating of the global

model for the detection of attacks. Also, visualizing

Fig. 5 more closely, from rounds 15 through 20,

DATA-FedAVG had similar accuracy performance

amongst the varying fraction of clients, except in
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Algorithm Fraction Size (F) Precision (%) Recall (%) F1-Score (%)

FedAVG [27] 89.17 90.33 89.32

FedSGD [32] F = 0.5 89.78 91.15 90.44

Proposed 90.46 91.76 91.09

FedAVG [27] 89.06 90.08 88.42

FedSGD [32] F = 0.6 89.87 91.07 90.46

Proposed 90.56 91.59 91.06

FedAVG [27] 88.36 88.88 88.53

FedSGD [32] F = 0.7 87.45 88.20 87.81

Proposed 90.18 90.66 89.42

FedAVG [27] 89.93 90.41 89.37

FedSGD [32] F = 0.8 89.50 91.04 90.26

Proposed 90.85 92.33 91.58

Table 6. Sensitivity Evaluation of the Three Aggregating Algorithms with Varying Fraction of Clients F = 0.5, 0.6, 0.7 and
0,8, Given Total Client K = 20

Fig. 6. Attack Detection Efficiency of the Proposed
Model, FedSGD and FedAVG with Varying Fraction of
Participating Clients, @ E = 5, and K = 20

round 35 for F = 0.8 where a significant increment

of about 98.4% accuracy was achieved.

In addition, for a robust evaluation given the

imbalanced dataset used, we investigated the

performance of the algorithms based on other

metrics, and their results are presented in Table 6.

From Table 6, DATA-FedAVG achieved the best

Precision, recall, and F1-score in all fractions of

client variation. Moreover, a significant

improvement is achieved by DATA-FedAVG at the

highest fraction client F = 0.8, recording a precision

value of 90.85%, recall of 92.33%, and F1-score of

91.58%. On the other hand, FedSGD performed

better than FedAVG given all evaluation metrics,

especially when F =0.6, with precision, recall, and

F1-score of 89.87%, 91.07%, and 90.46%

respectively. The overall enhanced performance of

DATA-FedAVG validates the robustness of the

proposed averaging algorithm in handling

contingencies relating to inactive participation of

some clients due to resource limitations or network

connectivity issues and its capability to secure aerial

wireless sensor network with minimal false alarm

rate when deployed in the real world.

4.2.3 Time Complexity Analysis and

Evaluation

Furthermore, the detection efficiency in terms of

processing time of all three algorithms was

evaluated with the same parameters, and the results

are captured in Fig. 6. A steady processing time was

achieved by all three algorithms @ F = 0.6, 0.7, and

0.8 from rounds 5 to 25. However, during round 30,

FedSGD recorded the lowest and highest training

times @ F = 0.6 and F = 0.8 respectively.

Conversely, the proposed algorithm constantly

maintained almost equal processing time for the

different variations of clients but experienced spikes

(latency issues) from rounds 30 to 40 @ F = 0.7,

recording a processing delay of almost 1000secs.

Although FedSGD had the least training time @ F

= 0.6, the unwavering and considerable amount of

time expended by the proposed model during all
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Algorithm Client Size (K) Precision (%) Recall (%) F1-Score (%) Accuracy (%) Time (secs)

FedAVG [27] 89.59 90.87 89.22 97.60 3652

FedSGD [32] K = 30 89.39 90.00 89.69 97.00 4328

Proposed 92.17 93.53 92.84 98.34 4069

FedAVG [27] 87.95 89.05 88.40 97.26 6119

FedSGD [32] K = 40 87.05 88.15 87.59 97.01 4270

Proposed 90.53 91.89 91.20 98.43 5358

FedAVG [27] 88.37 87.97 88.81 97.61 6340

FedSGD [32] K = 50 89.08 90.19 89.63 97.05 7400

Proposed 90.93 92.31 91.61 98.50 4281

Table 7. Scalabality Evaluation of the Different Aggregating Algorithms @ Varying Clients Size K = 30, 40, 50 given E = 5,
F = 0.6

Fig. 7. Accuracy Comparison of the Different
Aggregation Algorithms for Varying Client Size of K = 30,
40, 50, E = 5 and F = 0.6

rounds of communication and fraction of client

variations validates its attack efficiency and stability

even with a fluctuating fraction of client size.

4.2.4 Scalability Analysis and Evaluation:

Impact of Increasing Number of Clients

Participation

To ascertain the performance of the proposed

algorithm on a scalable network, simulation

experiments were conducted with different client

sizes of K = 30, K = 40, and K = 50, capturing the

performances of all three algorithms based on their

attack prediction accuracy and processing time in

Figs 7 and 8 respectively.

In Fig. 7 and Table 7, an increase in the number

of clients, for instance, K = 50, in Fig. 7 adversely

affected the accuracy performance of FedSGD and

FedAVG in building their optimized global model

that can accurately predict malicious network traffic

data. Considering both algorithms for K = 50,

FedAVG accuracy decreased from almost 96% in

round 10 to 95% in round 25. Likewise, FedSGD

also recorded a reduced performance from almost

97% in round 10 to 96% in round 25 when K = 50.

The performance degradation is a result of the

aggregating principles of both algorithms. That is,

the emergence of a convex global model is

determined by the absolute contributions of the

randomly selected clients amidst the delay

encountered. Consequently, the network will

experience a communication bottleneck, because as

the number of clients increases, a corresponding

increase in the communication between the clients

and the server is inevitable. Thus, leading to laggard

convergence and reduced accuracy of the global

model.

In addition, while FedAVG had a better precision

of 0.2% and 0.9% more than FedSGD when K=30

and K= 40 respectively in Table 7, FedSGD

achieved a higher precision of 0.71% more than

FedAVG when K=50. Based on the performance of

both algorithms on other evaluation metrics

highlighted also in Table 7, FedAVG outperformed

FedSGD when the client sizes are K=30 and K=40,

except for K=50 where FedSGD slightly

outperformed FedAVG. For the performance of the

proposed algorithm, also referencing Fig. 7 and

Table 7, increasing the number of clients does not
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greatly affect the convergence of the global model.

In Fig. 8, no significant difference in the training

time (1000 - 3500secs) among the algorithms during

the communication rounds of 5 to 25 for all client

sizes. While the proposed algorithm maintained an

almost steady processing time for client sizes, an

exploding processing time during the communication

round at 35 was recorded for FedAVG when K = 50.

Moreover, because DATA-FedAVG adaptively

selects the fraction of clients based on models’

accuracy contribution and their convergence speed

during local training, stringently limiting the

participating number of clients, thus, enhancing the

efficiency of the global model and its reliability in

providing robust security to a delay-tolerant network

like the UAV.

Fig. 8. Efficiency Comparison of the Different
Aggregation Algorithms for Varying Client Size of K =30,
40, 50, E = 5 and F = 0.6

Ⅴ. Conclusion

This paper proposes a reliable and optimized

federated aggregation algorithm, DATA-FedAVG,

for intelligently securing an edge-assisted UAV

network from intrusions and cyberattacks. While

ensuring privacy is achieved in each cluster in the

network, DATA-FedAVG exploits a mechanism that

allows only a fraction of clients with high attack

accuracy contributions to participate in the federated

learning, hence still accommodating straggling

clients, to speed up global convergence within a

minimal communication cost. Simulation

experiments performed with the WSN-DS

cybersecurity dataset and comparison with other

federated aggregation algorithms ascertained the

superior detection accuracy of DATA-FedAVG over

FedAVG and FedSGD, even at a reduced

communication round. DATA-FedAVG also

demonstrated reliability for a scalable network,

given its robust performance when the number of

participating clients increases in the network.

However, the additional computational complexity

introduced by the proposed algorithm is the cost of

adequately and efficiently detecting malicious

network traffic data and can not be neglected. For

our future work, we hope to contribute to the

challenge of model and data poisoning from

malicious clients in the federated network, by

employing encryption techniques to mitigate such

vulnerabilities.
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